

Chain transfer reaction by trialkylaluminum (AIR₃) in the stereospecific polymerization of propylene with metallocene - AIR₃/Ph₃CB(C₆F₅)₄

Naofumi Naga* and Kooji Mizunuma

Petrochemicals Research Laboratory, Sumitomo Chemical Co. Ltd, 2-1 Kitasode Sodegaura, Chiba 299-02, Japan (Received 22 July 1997; revised 22 August 1997; accepted 1 September 1997)

Stereospecific polymerization of propylene was carried out with *rac*-ethylenebis(indenyl)zirconium dichloride (*rac*-Et(Ind)₂ZrCl₂) (1), *rac*-dimethylsilylenebis(indenyl)zirconium dichloride (*rac*-Me₂Si(Ind)₂ZrCl₂) (2) and isopropylidene(cyclopentadienyl)(9-fluorenyl)zirconium dichloride (*i*-Pr(Cp)(Flu)ZrCl₂) (3) combined with trialkylaluminum (AIR₃: $R = C_2H_5$, *i*-C₄H₉)/triphenylcarbenium tetrakis(pentafluorophenyl)borate (Ph₃CB(C₆F₅)₄) (4). In isospecific polymerization with 1 and 2, the molecular weight of polypropylenes decreased with increase in the molar ratio of AlEt₃ (Et = C₂H₅)/Zr, whereas, an effect of Al*i*Bu₃ (*i*Bu = *i*-C₄H₉) concentration on molecular weight was not observed. The microstructures of resulting polypropylenes were studied by ¹³C n.m.r. and an increase in the molar ratio of ethyl end groups (derived from chain transfer to AlEt₃) to *n*-propyl end groups (derived from β -hydrogen transfer) was observed with increase in the molar ratio of AlEt₃/Zr (1 and 2). The chain transfer reactions by both AlEt₃ and Al*i*Bu₃ were also detected in syndiospecific polymerization with 3. The molar ratio of alkyl (R) end groups (derived from chain transfer to AlR₃) to *n*-propyl end groups was higher in the polypropylene obtained with AlEt₃ than that obtained with Al*i*Bu₃. The relative constants k_{txA}/k_p (k_{txA} = rate constant of chain transfer to AlR₃, k_p = rate constant of propagation) were determined by kinetic study. © 1998 Published by Elsevier Science Ltd. All rights reserved.

(Keywords: propylene; polymerizatrion; zirconocene)

INTRODUCTION

Since the discovery of the zirconium complex $[Cp_2ZrCH_3(THF)]^+[BPh_4]^-$ (Cp = cyclopentadienyl) that polymerizes ethylene in polar solvent by Jordan *et al.*¹, much effort has been expended in the development of cationic metallocene catalysts for olefin polymerization²⁻⁴. Shortly afterwards, Chien *et al.* reported the higher activity in isospecific polymerization of propylene catalyzed by *rac*-Et(Ind)₂Zr(CH₃)₂ combined with Ph₃CB(C₆F₅)₄ than combined with MAO⁵. Furthermore, the ethyl analogue produced by the reaction between *rac*-Et(Ind)₂ZrCl₂ and AlEt₃, followed by the addition of Ph₃CB(C₆F₅)₄ proceeded isospecific polymerization of propylene ^{6,7}. Stereospecific polymerization of propylene with cationic metallocene catalysts has been investigated from both industrial and theoretical points of view.

The comparison of microstructures of polymers obtained with cationic metallocene catalysts and MAO-activated catalysts in the stereospecific polymerization of propylene has been reported. Ewen performed the stereospecific polymerization of propylene with *i*-Pr(Cp)(Flu)ZrCl₂ and *rac*-Et(Ind)₂ZrCl₂ combined with MAO, AlEt₃/ Ph₃CB(C₆F₅)₄ and AlEt₃/Ph₃CAl(C₆F₅)₄⁸. Judging from these results, the isotacticties of resulting polypropylenes were almost the same with any kinds of cocatalysts, in contrast, the syndiotacticities of polypropylenes obtained with AlEt₃/counterions were lower than that obtained with MAO. Fink et al. carried out propylene polymerization with $rac-Me_2Si(Ind)_2ZrMe_2/(C_4H_9)_3NHB(C_6F_5)_4$ and rac-Me₂Si(Ind)₂ZrCl₂/MAO, and concluded that no difference of stereospecificity was observed in polypropylenes obtained with each catalyst^{9,10}. They showed in full detail the effect of the molar ratio of (ammonium borate) B/Zr to the polymerization activity, molecular weight and microstructures of polypropylenes. Much attention has been directed to the determination of the active sites of cationic metallocene catalysts in equilibrium with counterions. Chien et al. discussed the differences between coordinating and non-coordinating counterions on the rate constant of propagation, isospecificity and molecular weight of obtained polypropylenes¹¹

End group analysis of polymer provides important insight into the chain transfer reaction in Ziegler–Natta polymerization. Four kinds of chain transfer reactions have been observed in propylene polymerization with metallocene catalysts (*Scheme 1*). The first chain transfer reaction is β -hydrogen transfer to the metal^{12–20}. This reaction produces vinylidene groups at the terminated chain end and *n*-propyl groups at the initiated chain end. The second chain transfer reaction is β -hydrogen transfer to the monomer^{15,17,19,21}. The same chain end groups derived from β -hydrogen transfer to the metal are formed through this reaction. The chain end structure of the 2-butenyl group,

^{*}Corresponding author. Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama 226, Japan. Tel: 0081 45 924 5241; Fax: 0081 45 924 5276; e-mail: PX112535@niftyserve.or.jp

1. β-Hydrogen transfer to the metal

$$\begin{array}{c} \mathsf{CH}_3 \\ | \\ \mathsf{Mt}-\mathsf{CH}_2-\mathsf{CH}-\mathsf{P} \end{array} \xrightarrow{} \mathsf{Mt}-\mathsf{H} + \mathsf{CH}_2=\mathsf{C}-\mathsf{P} \end{array}$$

2. β-Hydrogen transfer to the monomer

 $\begin{array}{c} \mathsf{CH}_3 \\ \mathsf{CH}_3 \\ \mathsf{H}_2 \\ \mathsf{H$

3. β-Methyl elimination

4. Chain transfer to AIR₃

 $\begin{array}{c} \mathsf{CH}_3 \\ | \\ \mathsf{Mt}-\mathsf{CH}_2-\mathsf{CH}-\mathsf{P} \end{array} \xrightarrow{\mathsf{AIR}_3} \mathsf{Mt}-\mathsf{R} + \mathsf{R}_2-\mathsf{AI}-\mathsf{CH}_2-\mathsf{CH}-\mathsf{P} \end{array}$

Scheme 1 Chain transfer reaction in propylene polymerization: Mt = metal, and P = polymer chain.

derived from the β -hydrogen transfer after secondary insertion, was also observed^{22,23}. The third chain transfer reaction is β -methyl elimination²⁴⁻³⁴. The chain end structure of a vinyl group is formed through β -methyl elimination. The fourth chain transfer reaction is chain transfer to aluminum $^{18,35-38}$. In the case of using MAO, this chain transfer reaction occurred at lower polymerization temperature or lower propylene concentration. In the case of using AlR₃ (without MAO), chain transfer to aluminum was determined by chain end analysis of resulting polypropylenes. Zambelli et al. carried out the polymerization of propylene with rac-Et(Ind)₂ZrCl₂/Al(CH₃)₂F-Al(CH₃)₃ and observed a chain transfer process to Al(CH₃)₃ by analysis of the resulting polypropylene³⁵. Soga et al. investigated the polymerization of propylene with supported metallocenes (for example rac-Et(Ind)₂ZrCl₂/Al₂O₃) activated by common AlR₃ and reported the chain transfer to AlR₃³ Only a few investigations have been reported about the effect of AlR₃ concentration on the stereospecific polymerization of propylene. Bochmann et al. studied the effect of Al(CH₃)₃ concentration on propylene polymerization with rac-[Me₂Si(Ind)₂Zr(μ -Me₂)]-B(C₆F₅)₄/Al(CH₃)₃, rac- $Me_2Si(Ind)_2ZrMe_2-Ph_3CB(C_6F_5)_4/AlEt_3$, and observed decrease of molecular weight with increase in the AlR₃ concentration^{39,40}. Uchida et al. also reported the stereospecific polymerization of propylene with metallocene combined with AlR₃/Ph₃CB(C₆F₅)₄ and a great deal of effort was made to determine the effect of AIR₃ concentration on the activity of polymerization⁴

In this work, we have studied the effect of AlR₃ concentration on the molecular weight and the chain end structures of obtained polypropylene to characterize the process of chain transfer to AlR₃ (AlEt₃ and Al*i*Bu₃) in stereospecific (isospecific and syndiospecific) polymerizations of propylene with metallocene — AlR₃/Ph₃CB(C₆F₅)₄ catalyst systems.

EXPERIMENTAL

Materials

rac-Et(Ind)₂ZrCl₂ (1) and rac-Me₂Si(Ind)₂ZrCl₂ (2) were commercially obtained from Witco Co. and used without further purification. *i*-Pr(Cp)(Flu)ZrCl₂ (3) was prepared according to the literature⁴². AlEt₃, Al*i*Bu₃ and MAO were commercially obtained from Tosoh Akzo Co., Ltd. and used without further purification. Ph₃CB(C₆F₅)₄ (4) was commercially obtained from Tosoh Akzo Co., Ltd. and used without further purification. Toluene was commercially obtained and dried over 4 A molecular sieves.

Polymerization of propylene

Polymerizations were conducted in an agitated 11 autoclave. The autoclave was back-flushed with argon several times, then 300 ml of toluene was injected and the system was warmed to 40°C. The argon was replaced with $4 \text{ kg cm}^{-2} \text{ G of propylene, and the toluene was stirred until}$ the monomer saturation was achieved. A 100 ml glass flask was charged with 10 ml of toluene, AlR₃ and catalyst, and the mixture was stirred for 5 min at room temperature in advance. The catalyst solution and toluene solution of 4 were added to start the polymerization. In the polymerization using MAO, MAO was used instead of AlR₃ and polymerization was started without 4. Termination was carried out by the addition of isobutyl alcohol. After the polymerization, the unreacted monomer was vented and the mixture was quenched with plenty of methanol. The polymer was filtered, washed with methanol and dried in vacuo at 60°C for 6 h.

Analytical procedures

The molecular weights and molecular weight distributions of polymers were measured at 145°C by gel-permeation chromatography (GPC) (Waters 150CV) using *o*-dichlorobenzene as solvent. Weight-average molecular weight (M_w) was determined by the equation: $M_w = A_w Q$ (A_w and Q are, respectively, weight-average molecular size (Å) and Q-factor (26.4 for polypropylene)⁴³. The ¹³C n.m.r. spectrum was recorded at 135°C on a JEOL EX-270 n.m.r. spectrometer operating at 67.8 MHz. Polymers were dissolved in *o*-dichlorobenzene–benzene- d_6 (vol. ratio = 9:1) up to 5 wt%. The melting points (T_m) of polymers were determined by DSC (Perkin–Elmer DSC-VII) from the melting endotherm at a heating rate of 5°C min⁻¹ after previous heating to 180°C and cooling to 50°C by 5°C min⁻¹.

The propylene-toluene vapor-liquid equilibrium at 40° C, 4 kg cm⁻² G of propylene was estimated from the Soave-Redich-Kwong equation⁴⁴ using the ASPEN-PLUS⁵⁹ program.

RESULTS AND DISCUSSION

Propylene polymerization with rac- $Et(Ind)_2ZrCl_2$ (1) and rac- $Me_2Si(Ind)_2ZrCl_2$ (2)

Isospecific polymerization of propylene was conducted with 1 and 2 combined with AlEt₃ or Al*i*Bu₃/4. The metallocene combined with methylaluminoxane (MAO) catalyst system was also used for reference. The results of the propylene polymerization, together with the molecular weight of polypropylenes, are summarized in *Table 1 Table 2*. Increase in the molar ratio of AlEt₃/Zr resulted in the marked decrease of molecular weight. On the other hand, the molecular weight of polypropylenes was independent of the molar ratio of Al*i*Bu₃/Zr. These results indicate that chain transfer to AlEt₃ occurs frequently, wherease, Al*i*Bu₃ does not participate in the chain transfer reaction.

Table 1 Results of propylene polymerization with 1-AlR₃/4 and MAO^a

(a) β -Hydrogen transfer (to the metal or monomer)

(b) Transfer to AIEta

(c) Transfer to Al/Bu₃

Scheme 2 Chain end structures of polypropylene: P = polymer chain.

The chain end groups of polypropylenes were detected by ${}^{13}Cn.m.r.$ to study the chain transfer reaction more detail. The typical polymer end groups, found in low molecular polypropylene produced by ordinary metallocene catalysts, are the vinylidene group resulting from β -hydrogen transfer and *n*-propyl group formed by insertion of propylene into the resulting metal-hydride [*Scheme 2(a)*]. When the chain transfer to AlEt₃ occurs, the polymer end groups are the isopropyl group formed by insertion of propylene into the ethyl group formed by insertion of propylene in to the

Run	Cat. (µmol)	AlR ₃	Molar ratio Al/Zr	Polymn. time (min)	Yield (g)	Activity (kg PP mol ^{-1} Zr·h ^{-1})	$M_{\rm w}^{\rm b}$ (× 10 ⁻⁴)	$M_{\rm w}/M_{\rm n}^{\rm b}$
1	3.6	AlEt ₃	150	60	26.4	7300	6.0	1.9
2	3.1	AlEt	250	60	44.7	14 400	5.4	2.0
3	2.9	AlEt	500	60	25.6	9000	5.1	1.9
4	3.6	AlEt	1000	60	11.5	3200	3.6	2.0
5	1.6	AliBu ₁	150	30	44.3	56 100	7.2	1.9
6	1.2	AliBu	250	30	63.5	102 000	6.8	1.9
7	1.3	AliBu ₃	500	30	61.0	94 400	6.8	2.0
8	1.1	AliBu ₃	1000	30	50.0	92 900	7.0	1.9
9	7.4	(MAO)	1000	10	29.2	23 600	4.8	2.2

^aPolymerization conditions: polymn. temp., 40°C; toluene, 300 ml; propylene, 4 kg cm⁻² G; molar ratio of 4/Zr = 1.0. ^bDetermined by GPC: $[M_w = 26.4 \times A_w (Å)]$.

	Table 2	Results of r	propylene j	polymemization	with 2-AlR ₃ /4 and MAO ^a
--	---------	--------------	-------------	----------------	---

Run	Cat. (µmol)	AIR ₃	Molar ratio Al/Zr	Polymn. time (min)	Yield (g)	Activity (kg PP mol ^{-1} Zr·h ^{-1})	$\frac{M_{w}^{b}}{(\times 10^{-4})}$	$M_{\rm w}/M_{\rm n}^{\rm b}$
10	4.7	AlEt ₃	150	60	20.2	4300	6.4	1.9
11	4.6	AlEt	250	60	22.9	4900	5.6	1.9
12	4.2	AlEt ₃	500	60	9.3	2200	4.8	2.0
13	5.1	AlEt ₃	1000	60	36.0	7000	3.5	2.0
14	1.7	Al/Bu 2	250	10	59.3	213000	5.6	1.9
15	0.71	AliBu ₂	500	10	46.3	389000	6.4	2.0
16	0.67	AliBu ₃	1000	10	40.2	361000	6.1	1.9
17	0.60	(MAO)	1000	60	4.0	6600	7.4	1.9

^aPolymerization conditions: polymn. temp., 40° C; toluene, 300 ml; propylene, 4 kg cm⁻² G; molar ratio of 4/Zr = 1.0. ^bDetermined by GPC [$M_w = 26.4 \times A_w$ (Å)].

Figure 1 13 C n.m.r. spectra of isotactic polypropylenes obtained with 1: (a) AlEt $_{3}/4$; (b) AliBu $_{3}/4$; and (c) MAO.

Table 3 Microstructiures of isotactic polypropylenes obtained with 1,2-AIR 3/4 and MAO

Run	Cat.	AIR ₃	Molar ratio Al/Zr	[mmmm] (%)	[mmrr] (%)	[mrrm] (%)	2,1-(m) (%)	2,1-(r) (%)	1,3-(%)	End group ^a -R/- <i>n</i> Pr	T _m ^b (°C)
1	1	AlEt 3	150	88.9	4.9	1.9	0.60	0.19	0.19	0.56	141.0
4	1	AlEt	1000	88.2	5.2	2.0	0.65	0.21	0.14	1.76	141.0
8	1	AliBu 3	1000	89.6	4.3	2.0	0.58	0.22	0.17	0.00	138.7
9	1	(MAO)	1000	87.4	5.6	2.1	0.53	0.26	0.08		136.9
10	2	AlEt ₃	150	92.4	3.3	1.3	0.53	0.16	0.04	0.62	145.6
13	2	AlEt ₃	1000	92.8	3.0	1.3	0.58	0.30	0.07	1.25	146.0
16	2	AliBu ₃	1000	91.8	3.4	1.5	0.64	0.23	0.17	0.00	142.3
17	2	(MAO)	1000	93.3	3.0	1.1	0.40	0.20			145.1

^aMolar ratio of (R end groups)–(*n*-propyl end groups) determined by ¹³C n.m.r., R = alkyl group in AlR₃, nPr = n-propyl. ^bMelting temperature.

resulting metal-ethyl group [Scheme 2(b)]. The chain transfer to the AlEt₃ was detected by Soga *et al.* in the propylene polymerization with rac-ethylenebis(tetrahydroindenyl)zirconium dichloride (rac-Et(H₄Ind)₂ZrCl₂)/ Al_2O_3 -AlEt₃ without MAO, and the assignment of the chemical shifts in ¹³C n.m.r. could be made according to the report³⁸. The chain transfer to AliBu₃ in the propylene polymerization produces only an isopropyl end group resulting from Al-polymer connection and insertion of propylene into the metal-isobutyl group [Scheme 2(c)]. The same isopropyl end group could be formed by the chain transfer to $Al(CH_3)_3$. Busico et al. reported the chain transfer to $Al(CH_3)_3$ (in equilibrium with MAO) in the isospecific polymerization of propylene with 1/MAO, and the assignment of chemical shifts in ¹³C n.m.r. spectrum could be made according to the report¹⁹. Figure l(a-c)illustrate the ¹³C n.m.r. spectra of isotactic polypropylenes obtained with 1 combined with different cocatalysts, and the

assignments of chain end structures are shown in Scheme 2. The ¹³C n.m.r. spectrum of isotactic polypropylene obtained with AlEt₃/4 displays not only the peaks attributable to n-propyl end groups at ca. 14.3 (1t), 20.2 (2t), 39.8 (3t), 22.8 (5t) ppm, but also strong peaks at ca. 23.6 (6t), 25.7 (7t) ppm attributable to isopropyl end groups and at ca. 11.1 (8t), 32.8 (10t) ppm attributable to ethyl end groups derived from chain transfer to AlEt₃. The molar ratio of the (ethyl end groups)/(n-propyl end groups) was determined by analyzing the intensity of corresponding peaks in the ¹³C n.m.r. spectra, and the results are summarized in Table 3. The content of ethyl end groups was higher than that of *n*-propyl end groups in the polypropylenes obtained with both 1 and 2 at the molar ratio of AlEt₃/Zr = 150, Higher concentration of ethyl end groups in comparison with *n*-propyl end groups was detected in the polymers obtained at the molar ratio of AlEt $\sqrt{Zr} = 1000$. On the other hand, only the peaks attributable to *n*-propyl end groups

Run	Cat. (µmol)	AIR ₃	Molar ratio Al/Zr	Polymn. time (min)	Yield (g)	Activity (kg PP mol ⁻¹ $Zr \cdot h^{-1}$)	$M_{\rm w}^{\rm b}$ (×10 ⁻⁴)	$M_{\rm w}/M_{\rm n}^{\rm b}$	[mn] (%)	[rmrr] (%)	[rmmr] (%)	End group ^c -R/- <i>n</i> Pr
18	7.9	AlEt ₃	250	120	3.5	220	6.3	1.9				
19	7.2	AlEt ₃	500	120	2.5	170	5.7	2.1				
20	6.9	AlEt ₃	1000	120	2.5	180	3.8	2.2	86.6	2.7	1.6	2.80
21	7.2	AliBu ₃	250	120	12.5	870	13.6	2.2				
22	7.2	AliBu ₃	500	120	11.7	810	12.9	2.5				
23	5.3	AliBu ₃	1000	120	8.8	630	10.6	2.3	84.4	3.3	1.6	0.87
24	6.9	(MAO)	1000	30	35.8	10400	15.8	1.9	88.4	2.0	1.5	

Table 4 Results of propylene polymerization with 3-AlR₃/4 and MAO^a

^aPolymerization conditions: polymn. temp., 40°C; toluene, 300 ml; propylene, 4.0 kg cm⁻² G molar ratio of 4/Zr = 1.0.

^bDetermined by GPC: $[M_w = 26.4 \times A_w (Å)].$

^cMolar ratio of (R end groups)–(*n*-propyl end groups) determined by ¹³C n.m.r. R alkyl group in AlR₃, nPr = n-propyl.

derived from β -hydrogen transfer were detected in ¹³C n.m.r. spectrum of polypropylene obtained with Al*i*Bu₃/4 (*Figure 1b*).

The microstructures of isotactic polypropylenes are also studied by 13 C n.m.r. The assignment of the chemical shifts of 2,1-insertion and 1,3-insertion (*Scheme 3*) was made according to the literature¹²⁻⁴⁶, and the results are summarized in *Table 3*. Clear difference of isotacticity and regio specificity was not observed between the polypropylenes obtained with different cocatalysts and at the different molar ratio of AlEt₃/Zr.

Propylene polymerization with i-Pr(Cp)(Flu)ZrCl₂ (3)

Syndiospecific polymerization of propylene was carried out with 3 combined with AlR₃/4, and the results are listed in *Table 4*. Decrease of the molecular weight of polypropylenes were observed with increase in the molar ratio of AlEt₃/Zr and Al*i*Bu₃/Zr. The polypropylenes of higher molecular weight were obtained with Al*i*Bu₃ in stead of AlEt₃.

Figure 2a-c illustrate the ¹³C n.m.r. spectra of syndiotactic polypropylenes obtained with different cocatalysts.

(b) 1,3-Insertion

Scheme 3 Stereo-irregular of isotactic polypropylene obtained with metallocene catalyst.

The ¹³C n.m.r. spectrum of the syndiotactic polypropylene obtained with AlEt $\sqrt{4}$ (Figure 2a) displays not only the peaks attributable to n-propyl end groups (1t, 2t, 3t, 5t) but also strong peaks attributable to ethyl end groups (8t, 10t) and isopropyl end groups (6t, 7t) derived from chain transfer reaction by AlEt₃. Furthermore, the ¹³Cn.m.r. spectrum of the syndiotactic polypropylene obtained with AliBu₃/4 (Figure 2b) displays not only the peaks attributable to n-propyl end groups (1t, 2t, 3t, 5t), but also weak peaks attributable to isopropyl (isobutyl) end groups derived from chain transfer reaction by AliBu₃. These results indicate that chain transfers not only to AlEt₃ but also to AliBu₃ occurred in syndiospecific polymerization of propylene with 3. The molar ratio of (ethyl or isopropyl end groups)-(n-propyl end groups) was determined. It is very difficult to determine the end groups of syndiotactic polypropylenes obtained at the low molar ratio of AlR₃/Zr because the molecular weight of polymers was too high. At the molar ratio of $AlR_3/Zr =$ 1000, the end groups of syndiotactic polypropylenes were barely observed in ${}^{13}Cn.m.r.$ spectra. The isopropyl end groups are formed at the initiated and terminated polymer chain ends through the chain transfer reaction by AliBu₃, and the half intensity of the peaks in ¹³C n.m.r. of isopropyl end groups was applied to the intensity of initiated isopropyl end groups. At the molar ratio of $AlEt_3/Zr = 1000$, high concentration of ethyl end groups were detected. On the other hand, the content of isopropyl end groups derived from the chain transfer reaction by AliBu₃ was less than that of *n*-propyl end groups at the molar ratio of AliBu $\sqrt{Zr} = 1000$. These results suggest that chain transfer reaction occurred more frequently by AlEt₃ than AliBu₃.

The microstructures of syndiotactic polypropylenes obtained with 3 are summarized in Table 4. The [rrrr] pentad fraction of syndiotactic polypropylene with 3 combined with MAO is higher than that with $AlR_3/4$, as reported by Ewen previously⁸. Two types of stereo-irregular sequence are found in syndiospecific polymerization of propylene with 3 as shown in Scheme 4^{42} . One is [rmmr] that originated from reversed diastereoface selectivity (miss-insertion of propylene), the other is [rmrr] sequence originated from the migration of the propagating polymer chain to the vacant site. The stereo-irregular fraction of [rmmr] was almost the same in any syndiotactic polypropylenes, but higher [rmrr] was found in the polypropylenes obtained with $AIR_{3}/4$. These results suggest that the migration of propagating polymer chain to the vacant site occurred more frequently in syndiospecific polymerization with 3 combined with $AIR_3/4$ than combined with MAO.

Figure 2 $^{-13}$ Cn.m.r. spectra of isotactic polypropylenes obtained with 3: (a) AlEt $\sqrt{4}$; (b) AliBu $\sqrt{4}$; and (c) MAO.

Kinetic study of chain transfer to trialkylaluminum

The effect of AlR₃ concentration ([AI]) on the molecular weight of polypropylene was investigated to characterize the chain transfer reactions by AlEt₃ and Al*i*Bu₃. The degree of polymerization (P_n) can be described by the following equation⁴⁷

$$P_{n} = \int k_{p} [C^{*}] [M_{p}]^{a} dt / \left\{ [C^{*}] + \int (k_{tr} + k_{trA} [AI]^{b} + k_{trM} [M_{p}]^{c}) [C^{*}] dt \right\}$$

$$/P_{n} = (k_{tr} + k_{trM} [M_{p}]^{c}) / k_{p} [M_{p}]^{a} + k_{trA} [AI]^{b} / k_{p} [M_{p}]^{a}$$

1

where k_p , $[C^*]$, $[M_p]$, [Al], k_{tr} , k_{trA} and k_{trM} are, respectively, rate constant of propagation, number of active centre,

monomer concentration, AlR₃ concentration, rate constant of β -hydrogen transfer to the metal, transfer to AlR₃ and β -hydrogen transfer to the propylene monomer. The $[M_p]$ at the polymerization condition, propylene–toluene equilibrium at 40°C of 4 kg cm⁻² G, was calculated by the Soave–Redich–Kwong equation⁴⁴ and total volume = 389 ml, $[M_p] = 2.9 \text{ mol } 1^{-1}$ was applied to the condition. a, b and c are the reaction order. According to some previous reports, polymerization activity of propylene increased in proportion to the concentration of propylene monomer. The relationship between polymerization rate and monomer concentration has been studied by Fink *et al.* for metallocene–MAO catalysts, and a reaction order in propylene of 1.2 to 1.4 for 2/MAO and 3/MAO⁴⁸. On the other hand, the higher value (1.7) of reaction order of the polymerization rate with respect to propylene concentration was reported

Table 5 Kinetic study of chain transfer reaction by AlR₃ in stereospecific polymerization of propylene with metallocene catalysts^a

Run	Cat.	AIR ₃	[A1] (mol 1^{-1})	$1/P_{\rm n}~(\times~10^4)$	$k_{\rm trA}/k_{\rm p}$ (\times 10 ⁴)
1	1	AlEt 3	1.39	13.3	
2	1	AlEt	1.99	15.5	3.54
3	1	AlEt ₃	3.72	15.7	
4	1	AlEt ₃	9.25	23.3	
10	2		1.81	12.5	
11	2	AlEt ₃	2.95	14.2	2.88
12	2	AlEta	5.40	17.5	
13	2	AlEt ₃	13.1	24.0	
18	3	AlEt	2,76	12.7	
19	3	AlEt ₃	9.25	15.5	2.29
20	3	AlEt ₃	17.7	24.3	
21	3	AliBu	4.63	6.80	
22	3	AliBu ₃	9.25	8.15	0.49
23	3	AliBu ₃	17.7	9.11	0.12

^aPropylene monomer concentration $[M] = 2.9 \pmod{1^{-1}}$

1. Syndiotactic propagation

2. Reversed diastereoface selectivity

3. Chain migration to vacant site

Scheme 4 Syndiospecific polymerization mechanism of propylene: P = polymer chain, Φ , $O = CH_3$.

for *rac*-Me₂Si(benz[e]indenyl)₂ZrCl₂ and *rac*-Me₂Si(2-Me benz[e] indenyl)₂ZrCl₂/MAO by Mülhaupt *et al.*²³. In this study, we assume that only one propylene molecule is involved in the propagation step, and apply a = 1 for the reaction order. The $1/P_n$ increases in proportion to the concentration of AlR₃ ([Al]) as shown in *Figure 3*, and we apply the reaction order of the chain transfer rate with respect to AlR₃ concentration b = 1. The relative constants k_{uA}/k_p were calculated from the plots in *Figure 3*, and the results are summarized in *Table 5*. The values of relative constants k_{uA}/k_p with 1, 2, 3 combined with AlEt₃/4 at this polymerization condition range from 2.3×10^{-4} to 3.5×10^{-4} . The list is in order of relative constants k_{uA}/k_p with 3 combined with AliBu₃/4 is 0.49×10^{-4} about one fifth of that combined with AlEt₃/4.

CONCLUSION

In the stereospecific polymerization of propylene with metallocene combined with $AlR_3/4$, chain transfer to AlR_3

plays an important role in determining the molecular weight of polypropylene. The chain transfer reactions by AlEt₃ and AliBu₃ were studied by the analysis of molecular weight, chain end structures of obtained polymers and kinetic study.

In isospecific polymerization with 1 and 2 combined with AlR₃/4, the molecular weight of resulting polymers decreased with increase in the molar ratio of AlEt₃/Zr, and the chain end groups resulting from chain transfer to AlEt₃ were detected. On the other hand, the molecular weight of polymers was independent of the molar ratio of AliBu₃/Zr and the chain end groups resulting from chain transfer to AliBu₃ could not be observed by ¹³C n.m.r. Syndiospecific polymerization of propylene was conducted with 3 combined with AlR₃/4 and the chain transfer reactions by AlEt₃ and AliBu₃ were observed. The chain transfer to AliBt₃ occurs more frequently than to AliBu₃.

The relative constants k_{trA}/k_p with 1, 2, 3 combined with AlEt₃/4 were calculated from the plots of $1/P_n$ against [Al]. The k_{trA}/k_p with 3 combined with AliBu₃/4 is about one fifth of that combined with AlEt₃/4.

Figure 3 Plots of $1/P_n$ against trialkylaluminium concentration ([A]]): (\bigcirc) 1-AlEt₃/4; (\triangle) 2-AlEt₃/4; (\Box) 3-AlEt₃/4 and (**U**) 3-AliBu₃/4.

REFERENCES

- Jordan, R. F., Dasher, W. E. and Echols, S. F., J. Am. Chem. Soc., 1986, 108, 1718.
- 2. Jordan, R. F., LaPointe, R. E., Bradley, P. K. and Baezinger, N. C., *Organometallics*, 1990, **8**, 2892.
- Yang, X., Stern, C. L. and Marks, T. J., J. Am. Chem. Soc., 1991, 113, 3623.
- 4. Yang, X., Stern, C. L. and Marks, T. J., *Organometallics*, 1991, **10**, 840.
- Chien, J. C. W., Tsai, W.-M. and Rausch, M. D., J. Am. Chem. Soc., 1991, 113, 8570.
- 6. Chien, J. C. W., Song, W. and Rausch, M. D., *Macromolecules*, 1993, 26, 3239.
- Tsai, M.-W., Rausch, M. D. and Chien, J. C. W., Appl. Organomet. Chem., 1993, 7, 71.
- Ewen, J. A., in: Catalyst Design for Tailor-made Polyolefins, eds. K. Soga, and M. Terano. Elsevier, Amsterdam, 1994, p. 405.
- 9. Herfert, N. and Fink, G., Makromol. Chem., Rapid Comm., 1993, 14, 91.
- 10. Beck, S., Prosec, M. H., Brintzinger, H. H., Goretzki, R., Herfert, N. and Fink, G., J. Mol. Catal. A: Chem., 1996, 111, 67.
- Chien, J. C. W., Song, W. and Rausch, M. D. J., Polym. Sci., Part A: Polym. Chem., 1994, 32, 2387.
- Soga, K., Shiono, T., Takemura, S. and Kaminsky, W., Makromol. Chem., Rapid Comm., 1987, 8, 305.
- Grassi, A., Zambelli, A., Resconi, L., Albizzati, E. and Mazzocchi, R., *Macromolecules*, 1988, 21, 617.
- 14. Cheng, H. N. and Ewen, J., A. Makromol. Chem., 1989, 190, 1931.
- 15. Tsutsui, T., Mizuno, A. and Kashiwa, N., Polymer, 1989, 30, 428.
- Rieger, B., Mu, X., Mallin, D. T., Rausch, M. D. and Chien, J. C. W., *Macromolecules*, 1990, 23, 3559.
- Ewen, J. A., Elder, M., Jones, R., Haspeslagh, L., Atwood, J., Bott, S. and Robinson, K., Macromol. Chem., Macromol. Symp., 1991, 48/49, 253.
- Rieger, B., Reinmuth, W., Röll, W. and Brintzinger, H. H., J. Mol. Catal., 1993, 82, 67.
- Busico, V., Cipullo, R., Chadwick, J. C., Modder, J. F. and Sudmeijer, O., *Macromolecules*, 1994, 27, 7538.

- Giardello, M. A., Eisen, M. S., Stern, C. L. and Marks, T. J., J. Am. Chem. Soc., 1995, 117, 12114.
- Stehling, U., Diebold, J., Kirsten, R., Röll, W., Brintzinger, H. H., Jüngling, S., Mülhaupt, R. and Langhauser, F., Organometallics, 1994, 13, 964.
- 22. Resconi, L., Fait, A., Piemontesi, F., Colonnesi, M., Rychlicki, H. and Zeigler, R., *Macromolecules*, 1995, **28**, 6667.
- 23. Jüngling, S., Mülhaupt, R., Stehling, U., Brintzinger, H. H., Fischer, D. and Langhauser, F., J. Polym. Sci., Part A, 1995, 33, 1305.
- 24. Eshuis, J., Tan, Y., Teuben, J. H. and Renkema, J., J. Mol. Catal., 1990, 62, 277.
- Eshuis, J., Tan, Y., Meetsma, A. and Teuben, J. H., Organometallics, 1992, 11, 362.
- Yang, X., Stern, C. L. and Marks, T. J., Angew. Chem., Int. Ed. Engl., 1992, 31, 1375.
- Mise, T., Kageyama, A., Miya, S., Yamazaki, H., Chem. Lett., 1991, 1525.
- Resconi, L., Piemontesi, F., Franciscono, G., Abis, L. and Fiorani, T., J. Am. Chem. Soc., 1992, 114, 1025.
- Guo, Z., Swenson, D. and Jordan, R., Organometallics, 1994, 13, 1424.
- 30. Hajela, S. and Bercaw, J. E., Organometallics, 1994, 13, 1147.
- 31. Yang, X., Stern, C. L. and Marks, T. J., J. Am. Chem. Soc., 1994,
- 116, 10015.
 Sini, G., Macgregor, S. A., Eisenstein, O. and Tauben, J. H., Organometallics, 1994, 13, 1049.
- 33. Resconi, L., Jones, R. L., Rheingold, A. L. and Yap, G. P. A., Organometallics, 1996, 15, 998.
- Resconi, L., Piemontesi, F., Camurati, I., Balboni, D., Sironi, A., Moret, M., Rychlicki, H. and Zeigler, R., Organometallics, 1996, 15, 5046.
- Zambelli, A., Longo, P. and Grassi, A., *Macromolecules*, 1989, 22, 2186.
- Mogstad, A. L., Resconi, L. and Waymouth, R. M., *Polym. Prepr.*, 1991, **32**, 160.
- Resconi, L., Piemontesi, F., Franciscono, G., Abis, L. and Fiorani, T., J. Am. Chem. Soc., 1992, 114, 1025.
- 38. Soga, K. and Kaminaka, M., Makromol. Chem., 1993, 194, 1745.

- 39. Bochmann, M. and Lancaster, S. J., Angew. Chem., Int. Ed. Engl., 1994, 33, 1634.
- 40. Bochmann, M. and Lancaster, S. J., J. Organomet. Chem., 1995, 497, 55.
- 41. Uchida, O., Takeuchi, K., Sugimoto, R. in: Science and Technology in Catalysis 1994, 1995, p. 367, Kodansha Ltd., Tokyo. Ewen, J. A., Jones, R. L., Razavi, A. and Ferrara, J. D., J. Am. Chem.
- 42. Soc., 1988, 110, 6255.
- Ouano, A. C. and Mercier, P. L., J. Polym. Sci., Part C, 1968, 21, 43. 309.
- 44. Soave, G., Chem. Engng Sci., 1972, 27, 1197.
- Hayashi, T., Inoue, Y., Cyujo, R. and Asanuma, T., Macromole-45. cules, 1988, 21, 2675.
- 46. Mizuno, A., Abiru, T., Motowoka, M., Kioka, M. and Onda, M. J., Appl. Polym. Sci., Appl. Polym. Symp., 1993, 52, 159.
- 47. Shiono, T., Uozumi, T. and Soga, K., Kobunshi Ronbunshu, 1994, 51, 663.
- 48. Herfert, N. and Fink, G., Makromol. Chem., 1992, 193, 1359.